

Materials Library

zmorph3d.com

Materials Overview

3D Printing

Material		Features	Applications
	PLA	Biodegradable, easy to print, low emission, wide range of colours, low shrinkage, high stiffness.	Molds, consumer goods, architectural models, educational models, containers, medical accessories, prototypes, biodegradable models.
0	ABS	Dissolves in acetone, exceptional impact strength, good mechanical properties, good heat resistance.	Prototypes, consumer goods, jigs & fixtures, casings, models requiring high-impact strength, gearing, toys, automotive parts.
	PET-G	Stability dimensions, low shrinkage, good thermal resistance, scratch resistance, rigidity, good electrical properties.	Bottles, containers, electronic devices housings, precise bearings and gears, photography accessories, transparent elements, models requiring stability of shape.
B	Nylon	Great mechanical resistance, good abrasion resistance, high impact strength, lightweight, fatigue resistance.	Functional prototypes, gear wheels, plain bearings, models that require abrasion resistance, clips, hooks, screw nuts.
	HIPS	Dissolves in d-limonene, easy to postprocessing, lightweight, water resistant.	Support material, casings, containers, protective elements, mechanical parts, models that require abrasion resistance.
J.	ASA	Good impact strength, high temperature resistance, weather and UV resistance, dissolve in acetone.	Outdoor applications, models that require high UV resistance, sporting elements.
e	РММА	Transparency, UV resistance, high optical properties, tough, scratch resistance.	Optical applications, UV resistant models, chemical equipment, lamps, protective glass, illuminated signs, electronic casings.
	TPE	Good thermoplastic and elastic properties, vibration dampening, good impact and tensile strength.	Prototypes, end parts, connectors, covers, tools, robotic, dampeners.
3	PC	High impact strength, self- extinguishing, good optical properties, resistance for weather conditions, transparency, dimensional stability.	Automotive components, molds for silicone casting, lifts, photography accessories.
	PC/ABS	Great mechanical durability, heat resistance, stiffness, exceptional impact strength, UV resistance.	Cantilever elements, clasps, hooks, dashboards, keyboards, buttons, gears, propellers, housings.
1.	РР	Lightweight, good chemical resistance, resistance to moisture, good heat and fatigue resistance.	Mechanical parts, covers, housings, chemical accessories, containers, caps, pump valves.
	PVA	Dissolves in water, biodegradable.	Support for complex designs, molds for cold- metal casting.

Laser Cutting & Engraving

Material		Engraving	Cutting	Applications
	Leather	Х	х	Jewelry, engraved accessories, leather labels.
\$ 00	Felt	Х	х	Jewelry and decorations, furniture pads, coasters.
	Laser Foil	Х	Х	Stickers, advertising materials.
	Cardboard	Х	Х	Stencils, French curves.
1	Foamiran	Х	х	Jewelry and decorations, paddings.
\Box	Wood fiber boards	Х		Stencils, frame engraving.
N	Plywood	Х		Decorations, pictures.
	Wood	Х		Engraving on end products.
•	EPP		х	Package fillings for better product holding (e.g. small SD cards).
	EVA Foam		х	Accessories, casings.
ø	Neoprene	Х	Х	Wetsuits, face masks, electrical insulation, fan belts, laptop sleeves

Materials Overview

CNC Milling

Material		Family	Features	Applications
-	ABS	Plastics	Good machinability, high stiffness, good impact strength.	Casings, automotive parts, protective elements.
.0	Nylon	Plastics	High tensile strength, lightweight, does not burn - it just melts, low friction coefficient.	Cogwheels, dampening elements.
Ĩ	HDPE	Plastics	Sturdy, excellent machinability.	Casings, tooling/fixturing, prototyping.
ő	PTFE	Plastics	Good heat and chemically resistance, flexible, low friction coefficient.	Sliding elements, joints.
No.	PC	Plastics	Impact resistance, FDA compliant.	Advertising materials, transparent protective elements.
R	РР	Plastics	Moisture resistance, FDA compliant grades available.	Dampening elements, casings, clamps.
	РОМ	Plastics	Chemical resistance, abrasion resistance, excellent rigidity.	Cogwheels, bearing supports, connector elements.
Transfer	РММА	Plastics	Good hardness and stiffness, low water absorption, exceptional uv resistance.	Advertising materials, casings, office equipment.
•	PVC	Plastics	Lightweight, weather resistance, abrasion resistance.	Advertising materials, casings, office equipment.
YY	HIPS	Plastics	Good machinability, impact resistance, insulator, good impact resistance, paintable.	Advertising materials, casings.
11	LDPE	Plastics	Moisture resistance, FDA compliant.	Sliding rails, gibs, applications requiring low- temperature flexibility, toughness, and durability.
	PET	Plastics	Water resistance, durable, good thermal isolating properties, FDA compliant, immune to fracturing.	Casings, forms.
*	Carbon	Composites	Lightweight, sturdy, high stress resistance.	Drones, construction plates, industrial automation, robotics, aerospace tooling.

CNC Milling

Material		Family	Features	Applications
	CCL FR4	Composites	Sturdy, bending resistance.	PCBs.
0 10 10	Dibond	Composites	Lightweight, sturdiness.	Casings, advertising materials, signs.
	TCF	Composites	High thermal durability.	Electrical isolations, stencils.
	Wood	Wood derivatives	Fully biodegradable, good machinability.	Art, reliefs, panels, casings.
	Plywood	Wood derivatives	Excellent machinability, lightweight.	Mockups, prototypes, casings, constructing.
\Diamond	Wood fiber boards	Wood derivatives	Paintable.	Furniture, mockups, casings, art.
10	Aluminum	Metals	Lightweight, good machinability, good heat transfer.	Casings, radiators, fastenings, art.
	Brass	Metals	Good heat transfer, self lubricating.	Heating elements, casings, reliefs, gliding elements.
響	Copper	Metals	Great heat transfer, good machinability.	Radiators, heating elements.
-	Cardboard	Others	Eco-friendly, cheap, insulating	Packaging goods, hardcovers for books, advertising materials.
**	Machining Wax	Others	Excellent machinability.	Casting, casting cores, molds.
	Modelling Board	Others	Excellent machinability.	Casting, casting cores, molds.
(Fig	Styrodur	Others	Great insulator.	Advertising materials, composite cores, acoustic diffusers.

Zmorph Materials Library

3D Printing

FFF 3D Printing, also known as additive manufacturing, is a process of making three dimensional solid objects from a digital file. The objects are made by extruding material layer-by-layer until the object is created. FFF 3D Printing is commonly used for production applications, low-cost prototyping, modeling, and design verification with efficient turnaround times. The main advantages of 3D Printing are:

Profitability Time-effectiveness Design freedom Accessibility Risk reduction

Zmorph Fab All-in-One 3D Printer is compatible with a vast range of 3D printing materials and offers two high-tech toolheads: Single Extruder Toolhead and Dual Extruder Toolhead with advanced multi-material 3D printing features like printing with PVA support, selective two-material 3D printing, color blending, and image mapping.

Metric

	Build volume	235 x 250 x 165 mm	9.25 x 9.8 x 6.5 inch
	Layer resolution	50 - 400 microns	
	Build platform	Heated (up to 115°C)	239 °F
100 74	Max. printing temperature	250°C	482 °F
	Max. wall thickness	0.25 mm	0.0098 inch
	Angle accuracy	60°	
	Max. travel speed	120 mm/s	4.7 in/s

Technical Specs

V4 01 2021 of these data.

Imperial

PLA

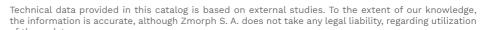
PLA (Polylactic Acid) is one of the most common 3D printing materials, it's easy to 3D print, compostable and emits low-toxic fumes. PLA is a cost-effective material best for early-stage prototyping, educational facilities, and containers.

Used for molds, consumer goods, architectural models, educational models, containers, medical accessories, prototypes, compostable models.

Compostable	Low emiss	sion	High stiffness	Easy to print
No problem wit	th shrink	Wid	e range of colours	

Material Properties Information

Material Properties	Metric
Thermal	
Vicat softening temperature	55 °C
Heat deflection temperature	55 °C
Mechanical	
Impact strength	16 kJ/m²
Flexural modulus	3500 MPa
Physical	
Density	1,24 g/cm ³
Melt Flow Index	6 g/10 min
Printing Properties	Metric
Printing Temperature	195 - 215 °C
Bed Temperature	35 - 60 °C
Nozzle	0,3 mm, 0,4 r
Printer Space	Open


Imperial	Method
131 °F	ISO 306
131 °F	ISO 75
7,61 lbf/in²	ISO 179
507,63 ksi	ISO 178
10,34 lb/gal	ISO 1183/B
6 g/10 min	ISO 1133

Imperial

383 - 419 °F

95 - 140 °F

mm, 0,6 mm

ABS (Acrylonitrile Butadiene Styrene) is a sturdy, plastic material with great impact strength and mechanical properties. ABS is a good material for testing, post-processing, low volume manufacturing, and objects where you need a strong, stiff plastic that copes well to external impacts.

Used for prototypes, consumer goods, jigs & fixtures, casings, models requiring highimpact strength, gearing, toys, car interiors.

Dissolvable in acetone Exceptional impact strenght Good mechanical properties

Good heat resistance

Material Properties	Metric
Thermal	
Vicat softening temperature	94 °C
Heat deflection temperature	89 °C
Mechanical	
Impact strength	20 kJ/m²
Flexural modulus	1800 MPa
Physical	
Density	1,04 g/cm ³
Melt Flow Index	40 g/10 min
Printing Properties	Metric
Printing Temperature	235 - 250 °C
Bed Temperature	90-110 °C
Nozzle	0,3 mm, 0,4 m
Printer Space	Closed

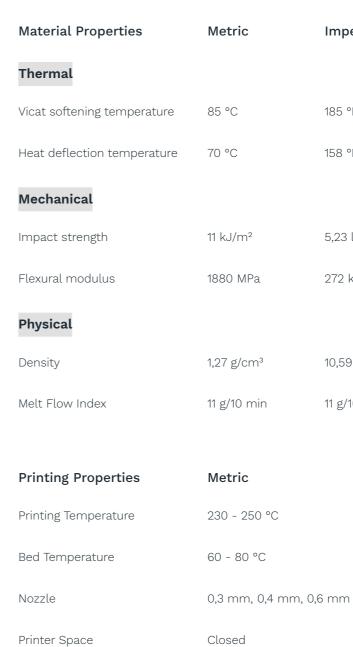
Imperial	Method
201 °F	ISO 306
192 °F	ISO 75
9,52 lbf/in²	ISO 179
261 ksi	ISO 178
8,67 lb/gal	ISO 1183/B
40 g/10 min	ISO 1133

Imperial

455 - 482 °F

194 - 230 °F

mm, 0,6 mm


PET-G (Polyethylene Terephthalate Glycol) is a common thermoplastic that exhibits industrial strength, barely produces fumes, and is known for its ease of printability and water resistance. PET-G is a perfect choice for low-cost prototyping and complex mechanical components.

Used for bottles, containers, electronic devices housings, precise bearings and gears, photography accessories, transparent elements, models requiring stability of shape.

Stability dimensions		No shrink	Good thermal resistance	Scratch resistant	
Rigidity	Rigidity Good electrical properties		es		

Material Properties Information

Imperial	Method
185 °F	ISO 306
158 °F	ISO 75
5,23 lbf/in²	ISO 179
272 ksi	ISO 178
10,59 lb/gal	ISO 1183/B
11 g/10 min	ISO 1133

Imperial

446 - 482 °F

140 - 176 °F

Nylon

Nylon (Polyamide) is a thermoplastic well known for its good chemical resistance, toughness, flexibility and abrasion resistance. Nylon is a perfect material choice for functional parts and mechanical applications.

Used for functional prototypes, gear wheels, plain bearings, models that require abrasion resistance, clips, hooks, screw nuts.

Great mechanical resistance Good abrasion resistance High impact strength

Fatigue resistance Lightweight

Material Properties Information

Material Properties	Metric
Thermal	
Vicat softening temperature	170 °C
Heat deflection temperature	165 °C
Mechanical	
Impact strength	11 kJ/m²
Flexural modulus	1180 MPa
Physical	
Density	1,01 g/cm ³
Melt Flow Index	8 g/10 min
Printing Properties	Metric
Printing Temperature	240 - 250 °C
Bed Temperature	80 - 100 °C
Nozzle	0,3 mm, 0,4 m
Printer Space	Closed

Imperial	Method
338 °F	ISO 306
329 °F	ISO 75
5,23 lbf/in²	ISO 179
171 ksi	ISO 178
8,42 lb/gal	ISO 1183/B
8 g/10 min	ISO 1133

Imperial

464 - 482 °F

176 - 212 °F

mm, 0,6 mm

HIPS

HIPS (High Impact Polystyrene) is a blend of polystyrene and rubber. It's easy to print with good strength and stiffness profile, recyclable and non-hygroscopic. HIPS is mainly used as support material for ABS prints because it's easily dissolvable in Limonene.

Used for support material, casings, containers, protective elements, mechanical parts, models that require abrasion resistance.

Dissolves in d'limonene Easy to postprocessing Lightweight Water resistance

back to material list >>

Material Properties Information

Material Properties	Metric
Thermal	
Vicat softening temperature	94 °C
Heat deflection temperature	89 °C
Mechanical	
Impact strength	7 kJ/m²
Flexural modulus	1800 MPa
Physical	
Density	1,04 g/cm ³
Melt Flow Index	7 g/10 min
Printing Properties	Metric
Printing Temperature	235-250 °C
Bed Temperature	65-110 °C
Nozzle	0,3 mm, 0,4 m
Printer Space	Closed

Imperial	Method
201 °F	ISO 306
192 °F	ISO 75
3,33 lbf/in²	ISO 179
261 ksi	ISO 178
8,67 lb/gal	ISO 1183/B
7 g/10 min	ISO 1133

Imperial

455 - 482 °F

149 - 230 °F

mm, 0,6 mm

ASA (Acrylonitrile Styrene Acrylate) is a thermoplastic that exhibits exceptional chemical resistance and is known for its high impact and temperature resistance. ASA is commonly used for our outdoor applications as it can cope with harsh weather conditions along with UV resistance.

Used for outdoor applications, models that require high UV resistance, sporting elements.

Good impact strength High temperature resistance Weather and UV resistance

Dissolves in acetone

Material Properties Information

Printing Properties	Metric
Printing Temperature	235 - 250 °C
Bed Temperature	80-90 °C
Nozzle	0,3 mm, 0,4 mn
Printer Space	Closed

Imperial

455 - 482 °F

176 - 194 °F

m, 0,6 mm

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

PMMA

PMMA (Polymethyl Methacrylate) is a transparent scratch resistant thermoplastic that exhibits high tensile and flexural strength, UV tolerance, and impact resistant. PMMA is used for end products and prototyping.

Used for optical applications, UV resistant models, chemical equipment, lamps, protective glass, illuminated signs, electronic casings.

Material Properties Information

Printing Properties	Metric
Printing Temperature	230 - 250 °C
Bed Temperature	60 °C
Nozzle	0,3 mm, 0,4 mr
Printer Space	Closed

Imperial

446 - 482 °F

140 °F

nm, 0,6 mm

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

Flexible filament can be used to 3D print any parts or objects that need to be soft, flexible or moveable. It's durable and resistant to wearing off, which makes it a good choice for technical and mechanical material.

Used for prototypes, end parts, connectors, covers, tools, robotic.

Good thermoplastic and elastic properties Vibration dampening

Good impact and tensile strength

Material Properties Information

Material Properties	Metric		
Thermal			
Vicat softening temperature	103 °C		
Heat deflection temperature	100 °C		
Mechanical			
Flexural modulus	8 MPa		
Physical			
Density	0,89 g/cm ³		
Printing Properties	Metric		

F	Printing Properties	Metric
F	Printing Temperature	235 - 250 °C
E	Bed Temperature	100 - 115 °C
ľ	Nozzle	0,3 mm, 0,4 mr
F	Printer Space	Open

Imperial	Method
217 °F	ISO 306
212 °F	ISO 75
1,16 ksi	ISO 37

ISO 1183/B 7,42 lb/gal

Imperial

455 - 482 °F

212 - 239 °F

nm, 0,6 mm

PC (Polycarbonate) is a lightweight thermoplastic that has exceptional toughness and great resistance to heat. PC has a high impact strength and it's extremely durable. This material is mainly is used for projects that require to retain their shape during subjecting to high temperatures.

Used for automotive components, molds for silicone casting, lifts, photography accessories.

High impact strength	Self-extinguishing	Good optical properties	Transparency
Dimensional stability	Resistance for weat	her conditions	

Material Properties Information

Material Properties	Metric
Thermal	
Vicat softening temperature	55 °C
Heat deflection temperature	55 °C
Mechanical	
Impact strength	16 kJ/m²
Flexural modulus	3500 MPa
Physical	
Density	1,24 g/cm ³
Melt Flow Index	6 g/10 min
Printing Properties	Metric
Printing Temperature	230 - 250 °C
Bed Temperature	85 - 100 °C
Nozzle	0,3 mm, 0,4 m
Printer Space	Closed

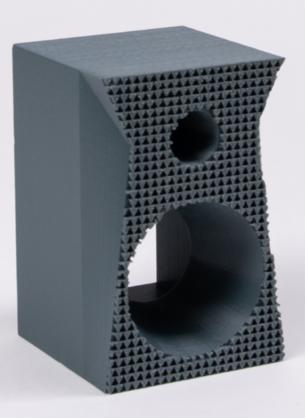
Imperial	Method
131 °F	ISO 306
131 °F	ISO 75
7,61 lbf/in²	ISO 179
507,63 ksi	ISO 178
10,34 lb/gal	ISO 1183/B
6 g/10 min	ISO 1133

Imperial

446 - 482 °F

185 - 212 °F

mm, 0,6 mm


PC/ABS

PC/ABS (Polycarbonate + Acrylic Butadiene Styrene) alloy combines exceptional PC mechanical properties and heat resistance with the ABS printability. PC/ABS is an extremely durable material used for strong and resilient prints.

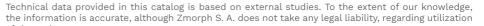
Used for cantilever elements, clasps, hooks, dashboards, keyboards, buttons, gears, propellers, housings.

Great mechanical durability Heat resistance Stiffness Exceptional impact strenght

UV resistance

Material Properties Information

Material Properties	Metric
Thermal	
Vicat softening temperature	115 °C
Heat deflection temperature	98 °C
Mechanical	
Impact strength	40 kJ/m²
Flexural modulus	2650 MPa
Physical	
Density	1,19 g/cm ³
Melt Flow Index	11 g/10 min
Printing Properties	Metric
Printing Temperature	240 - 250 °C
Bed Temperature	110 °C
Nozzle	0,3 mm, 0,4 mr
Printer Space	Closed


Imperial	Method
239 °F	ISO 306
208 °F	ISO 75
19 lbf/in²	ISO 179
384 ksi	ISO 178
9,93 lb/gal	ISO 1183/B
11 g/10 min	ISO 1133

Imperial

464 - 482 °F

230 °F

nm, 0,6 mm

PP

PP (Polypropylene) is a durable and lightweight material that exhibits very good heat and fatigue resistance. PP has a high level of flexibility and is resistant to many chemicals. Thanks to its excellent properties PP is commonly used for prototyping, electronic components, and lab equipment.

Used for mechanical parts, covers, housings, chemical accessories, containers, caps, pump valves.

LightweightGood chemical resistanceResistance to moisture

Good heat and fatigue resistance

Material Properties Information

Printing Properties	Metric
Printing Temperature	230 - 250 °C
Bed Temperature	100 - 120 °C
Nozzle	0,3 mm, 0,4 mr
Printer Space	Open

Imperial

446 - 482 °F

212 - 248 °F

nm, 0,6 mm

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

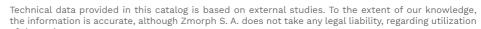
PVA

PVA (Polyvinyl Alcohol) is a biodegradable and water-soluble material for multi-extrusion 3D printing. PVA doesn't require special solvents as it's perfectly dissolvable in the water. PVA is the go-to support material for 3D printing complex designs with internal cavities, hollow spaces and large overhangs. It works great with PLA and Nylon.

Used for support for complex designs, molds for metal casting.

Material Properties	Metric
Thermal	
Vicat softening temperature	55 °C
Heat deflection temperature	55 °C
Mechanical	
Impact strength	16 kJ/m²
Flexural modulus	3500 MPa
Physical	
Density	1,24 g/cm ³
Melt Flow Index	6 g/10 min
Printing Properties	Metric
Printing Temperature	195 - 215°C
Bed Temperature	35 - 60 °C
Nozzle	0,3 mm, 0,4 m
Printer Space	Closed

back to material list >>


Imperial	Method
131 °F	ISO 306
131 °F	ISO 75
7,61 lbf/in²	ISO 179
507,63 ksi	ISO 178
10,34 lb/gal	ISO 1183/B
6 g/10 min	ISO 1133

Imperial

383 - 419 °F

95 - 140 °F

nm, 0,6 mm

Zmorph Materials Library

CNC Milli

CNC (Computer numerical controlled machin common subtractive manufacturing technolo a solid block using cutting tools to manufact its versatility and repeatability CNC milling is prototyping, mechanical parts and more. The

Accuracy Versatility Repeatability Rep

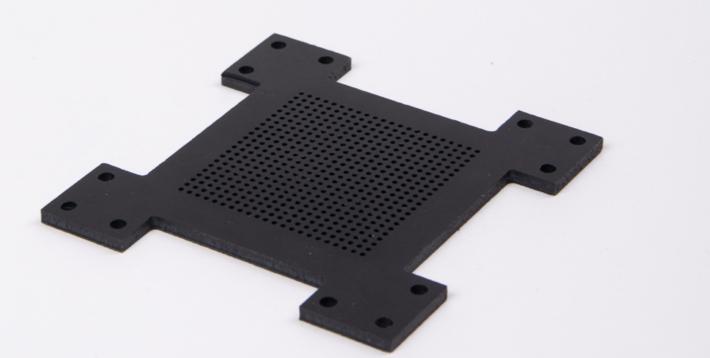
Turn Zmorph Fab All-in-One 3D Printer into Toolhead, that works with a wide range of ma metals, and foams. Dedicated CNC worktable fabrication process.

	Technical Specs	Metric
	X, Y, and Z operations strokes	235 x 250 x 85
	Mechanical resolution	0.014 x 0.0006
	Repeatable tolerance	+/- 0.1mm
	Work speed	0.1 - 20 mm/s
	Maximum spindle rotation	9.200 rpm
	Spindle motor	DC motor Type
	Cutting tool chuck	Collet method
233		
1.0.5	Following materials m	
i con	engraving always mak	
	against all hazardous	factors.

V4 01 2021

of these data.

ning) milling is one of t	he s one of the most		
ogies where the materi	al is removed from		
ure a part from a CAD			
s widely used for low-t			
e main advantages of C	:NC milling are:		
producibility			
a CNC milling unit with	CNC Milling		
aterials including plast			
e additionally ensures			
5	5		
	Imperial		
) x 85 mm	9.25 x 9.8 x 3.35 inch		
0006 mm	0.00055-0.0002 inch		
1	0.004 inch		
nm/s	0.004 - 0.8 in/s		
111/3	0.004 0.0 m/s		
n			
r Type 300W			
thod ER11			
	and a state of the		
$ 0\rangle$			
ous for your health. Du			
ou and your surroundin	es are protected		



ABS (Acrylonitrile Butadiene Styrene) is a common thermoplastic known for its high impact strength, good heat resistance, and outstanding machinability. ABS is widely used for prototyping applications thanks to its properties and cost-effectiveness.

Used for casings, car parts, protective elements.

Good machinability High stiffness Good impact strength

Material Properties Information

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	35 MPa
Elongation at Break	40%
Hardness	Rockwell R100
Density	0,97 g/cm ³
Maximum Temp	71 °C

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

5,100 PSI

0.035 lbs / cu. in

Nylon

Nylon (Polyamide) is an engineering thermoplastic that offers excellent abrasion resistance, high impact strength, electrical insulation, and good mechanical properties. Nylon is easy to machine, and ideal for jigs, fixtures, and wear blocks.

Used for cogwheels, dampening elements.

High tensile strengthLightweightLow friction coefficient

Does not burn - it just melts

Material Properties Information

Mechanical Properties	Metric	
Machining Difficulity		
Tensile Strength	77 MPa	
Elongation at Break	50%	
Hardness	Rockwell R110	
Density	1,13 g/cm ³	
Maximum Temp	85 °C	

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-12

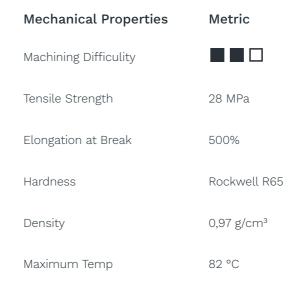
44444111

Imperial

11,200 PSI

0.041 lbs / cu. in

HDPE


HDPE (High-Density Polyethylene) is a thermoplastic with exceptional moisture and chemical resistance that has a good impact strength and large strength-to-density ratio. HDPE is resistant to many solvents, and it's popular for outdoor applications thanks to its good weather resistance.

Used for casings, tooling/fixturing, prototyping.

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

4,000 PSI

0.035 lbs / cu. in

PTFE (Polytetrafluoroethylene) is an engineering thermoplastic characterized by chemical inertness, exceptional low friction coefficient, and high heat resistance. Teflon offers exceptional thermal resistance and is used in cold temperature environments.

Used for sliding elements, joints.

Good heat and chemical resistance Low friction coefficient Flexible

Material Properties Information

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	31 MPa
Elongation at Break	300%
Hardness	Rockwell R60
Density	1.27 g/cm ³
Maximum Temp	204 °C

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-12

Imperial

4,500 PSI

0.046 lbs / cu. in

400 °F

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

PC

PC (Polycarbonate) is a popular engineering thermoplastic that has an excellent impact strength, is heat resistant and it's easy to machine. PC is a good choice for heat-resistant and outdoor applications.

Used for advertising materials, transparent protective elements.

Impact resistance Good creep FDA compliant

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	55 MPa
Elongation at Break	110%
Hardness	Rockwell R120
Density	1,24 g/cm ³
Maximum Temp	82 °C

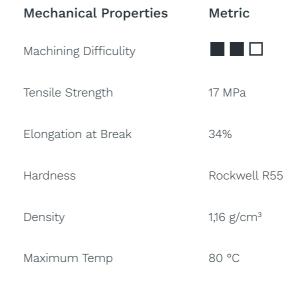
Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

8000 PSI

0.045 lbs / cu. in


PP

PP (Polypropylene) is a thermoplastic polymer with great chemical and solvent resistance that offers good impact strength and thermal resistance. Thanks to its properties PP is widely used for laboratory and manufacturing applications.

Used for dampening elements, casings, clamps.

Moisture resistance FDA compliant grades available

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1	6-12

Imperial

2,500 PSI

0.042 lbs / cu. in

176 °F

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

POM

POM (Polyoxymethylene) is an engineering thermoplastic characterized by high stiffness, low friction, and dimensional stability. POM is an easily machinable material perfect for wide applications like mechanical gears, sliding and guiding elements or medical applications.

Used for cogwheels, bearing supports, connector elements.

Chemical resistance Abrasion resistance Excellent rigidity

Material Properties Information

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	62 MPa
Elongation at Break	25%
Hardness	Rockwell M90
Density	1,41 g/cm ³
Maximum Temp	82 °C

Work Parameters

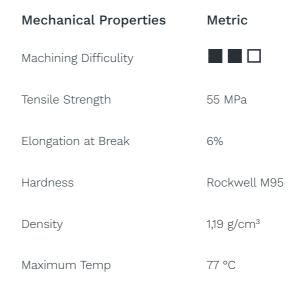
Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

9,000 PSI

0.051 lbs / cu. in

PMMA


PMMA (Polymethylmethacrylate) is a mostly optically clear or opaque plastic that comes in a variety of colors and textures. Acrylic is mostly used for art, jewelry, and optical applications.

Used for advertising materials, casings, office equipment.

Good hardness and stiffnes Low water absorption Exceptional UV resistance

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1	5-15

Imperial

8,000 PSI

0.043 lbs / cu. in

PVC

PVC (Polyvinyl Chloride) is a common plastic polymer that exhibits high hardness and mechanical properties along with high chemical resistance and exceptional insulating properties. PVC is easily machinable material making it a popular choice for manufacturing.

Used for advertising materials, casings, office equipment.

Lightweight Weather resistance Abrasion resistance

Material Properties Information

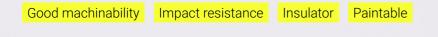
Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	41 MPa
Elongation at Break	272%
Hardness	Rockwell R115
Density	1,38 g/cm ³
Maximum Temp	60 °C

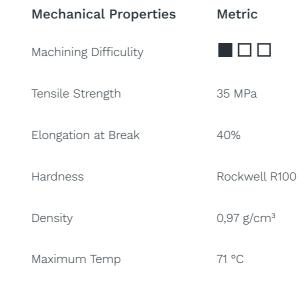
Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1	1-12
1.5	1-3

Imperial

6,000 PSI


0.050 lbs / cu. in


HIPS

HIPS (High Impact Polystyrene) is an inexpensive sturdy plastic material that is easy to machine and delivers high impact strength, great thermoforming characteristics and it's easy to glue, paint and print.

Used for advertising materials, casings, fixtures, shelves, models, and prototypes.

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

5,100 PSI

0.035 lbs / cu. in



LDPE

LDPE (Low-density Polyethylene) has excellent moisture resistance, plus it is softer, more malleable, and easier to form than other types of polyethylene. LDPE is a low-cost material that offers a good stability to temperature. It's often used for tanks, laboratory containers, bearings, and sliding rails.

Used for sliding rails, gibs, applications requiring low temperature flexibility, toughness, and durability.

Moisture resistance FDA compliant

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	7-12

Imperial

1,450 PSI

0.033 lbs / cu. in

PET

PET (Polyethylene Terephthalate) is a common thermoplastic polymer that's very strong and lightweight and exhibits excellent electrical insulating properties. PET has exceptional resistance to alcohols, oils and greases, and is widely used as cosmetic containers, gear housings, and engine covers.

Used for casings, forms.

|--|

Good thermal isolating properties FDA compliant

Immune to fracturing

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	55 MPa
Elongation at Break	125%
Hardness	Rockwell R125
Density	0.05 g/cm ³
Maximum Temp	150 °C

Work Parameters

	Stepdown [mm]	Speeds [mm/s]
	0.5 - 1	3-12
	1.5	5-12

Material Properties Information

Imperial

8,000 PSI

1,38 lbs / cu. in

Carbon fiber is a composite material with an excellent strength-to-weight ratio, high impact strength, low weight, and high-temperature tolerance. It's used as a lightweight alternative to materials like aluminum and for applications like industrial automation and robotics, drones, aerospace tooling, and manufacturing fixtures.

Used for drones, construction plates, industrial automation, robotics, aerospace tooling.

58

Material Properties Information

Work Parameters

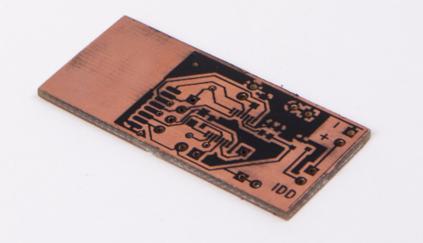
Stepdown [mm] Speeds [mm/s] 0.5 - 1 1-3

All properties are strongly dependent on force direction and material of composite

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

FR4 is a composite material composed of woven fiberglass cloth with an epoxy resin binder. It exhibits electrical isolation and mechanical strength and its the go-to option for short-run PCB production and prototyping.

Used for PCBs.


Sturdy Bending resistance

Material Properties Information

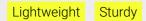
Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	262 MPa
Elongation at Break	0.01%
Hardness	Rockwell M110
Density	1,88 g/cm ³
Maximum Temp	122 °C

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1	1-5
1.5	1-4

Imperial

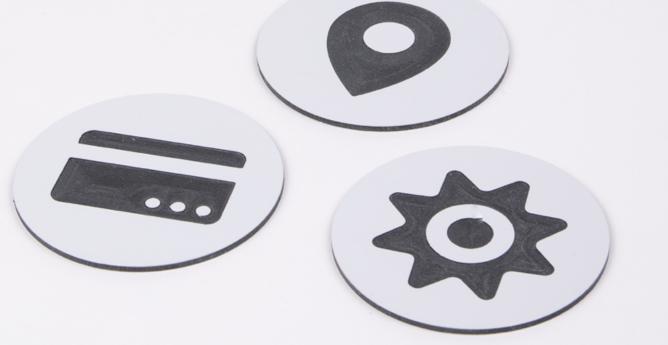
38,000 PSI


0.068 lbs / cu. in

Dibond

Dibond is a brushed aluminum composite sheet with polyethylene core known for its high-strength and low-weight ratio. It's easily machinable and presents great damage resistance. Dibond is waterproof, and it's ideal for outdoor signage and advertising displays.

Used for casings, advertising materials, signs.



Material Properties Information

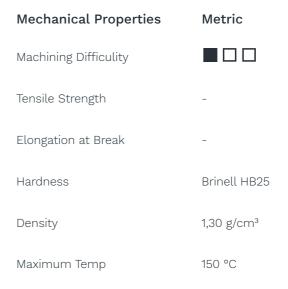
Work Parameters

	Stepdown [mm]	Speeds [mm/s]
	0.5 - 1.5	1-5

Imperial

23,200 PSI

Dependant on thickness of the material


TCF (Textolite Laminated Sheet) structural material that exhibits good mechanical and anti-friction characteristics. It's easy machinable and resistant to heat. TCF is used mainly for insulators, electrical winding insulation, and dielectric panels.

Used for electrical isolations, stencils.

High thermal durability

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

back to material list >>

Imperial

_

.047 lbs/cu. in.

CNC Milling - Wood derivatives

Wood

Wood is one of the most common material for CNC milling and it's easily machinable. There are two different types of wood (hardwood and softwood), that differ from each other with hardness and density. Wood is commonly used for art projects, furniture, prototypes and more.

Used for art, reliefs, panels, casings.

Fully biodegradable Good machinability

Material Properties Information

Imperial

5,100 PSI

the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

CNC Milling - Wood derivatives

Plywood

Plywood is a low-cost material made up from thin layers of wood sheets glued together. It's an exceptionally versatile material and a common choice for a wide range of applications such as packages, boxes, modeling, and constructing.

Used for mockups, prototypes, casings, constructing.

Excellent machinability Lightweight

(3) CC

68

Material Properties Information

1-15

0.5 - 1.5

back to material list >>

Imperial

4000 - 5000 PSI

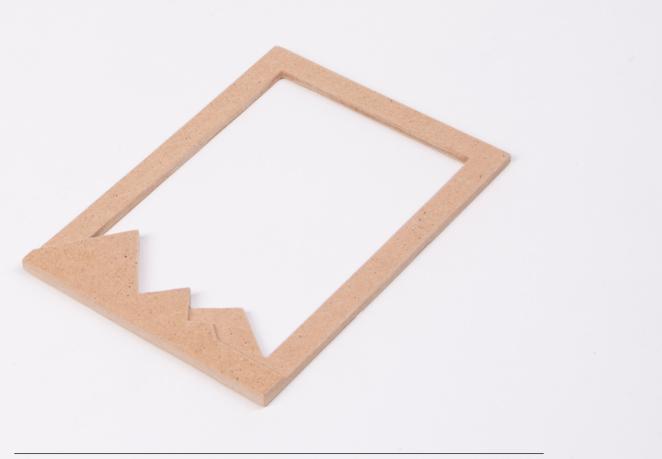
Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

CNC Milling - Wood derivatives

Wood fiber board

Wood fiber board is a type of engineered wood product made from wood fiber extracted from wood waste. The material offers high dimensional stability, strength characteristics, and exceptional processing properties.

Used for furniture, mockups, casings, art.


Paintable

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5 - 1.5	1-15

Imperial

0.018 lbs/cu. in.

-

CNC Milling - Metals

Aluminum

Aluminum 5754 is one of the most popular metals in the world with an exceptional strength-to-weight ratio, excellent machinability, and great corrosion resistance. Aluminum 5754 exhibits higher strength than 5251 and it's often used for prototyping and end parts manufacturing.

Used for casings, radiators, fastenings, art.

Material Properties Information

Work Parameters

Operation	Cutting/Engraving
Cutting Speed	1.50 mm/s
Lead in/out speed	1.25 mm/s
Max. step down	0.15 mm

Imperial

45,000 PSI

0.098 lbs / cu. in

CNC Milling - Metals

Brass M63 is an alloy of Copper and Zinc that is easily machinable, corrosion resistant and exhibits low friction. Thanks to its properties brass is often used for decorative items, gears, locks, and bushings.

Used for heating elements, casings, reliefs, sliding elements.

Good heat transfer Self lubricating

Material Properties Information

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	496 MPa
Elongation at Break	53% (UNS C360
Hardness	Rockwell B70
Density	7,75 g/cm ³
Maximum Temp	149 °C

Work Parameters (Brass M63)

Operation	Cutting/Engraving
Cutting Speed	1.50 mm/s
Lead in/out speed	1.00 mm/s
Max. step down	0.10 mm

Work Parameters (Brass MZN12)

Operation	Cutting/Engraving
Cutting Speed	1.00 mm/s
Lead in/out speed	0.8 mm/s
Max. step down	0.05 mm

Imperial

72,000 PSI

6000)

0.28 lbs / cu. in

CNC Milling - Metals

Copper M1ER is a popular metal with exceptional electric conductivity, high corrosion resistance, and great thermal conductivity. Copper is easily machinable and often used in applications like cooling systems, heat exchangers, valves and radiators.

Used for radiators, heating elements.

Great heat transfer Good machinability

Material Properties Information

Mechanical Properties	Metric
Machining Difficulity	
Tensile Strength	210 MPa
Elongation at Break	60 %
Hardness	Rockwell B51
Density	8,96 g/cm ³
Maximum Temp	260 °C

Work Parameters

Operation	Cutting/Engraving
Cutting Speed	1.75 mm/s
Lead in/out speed	1.25 mm/s
Max. step down	0.15 mm

Imperial

30,500 PSI

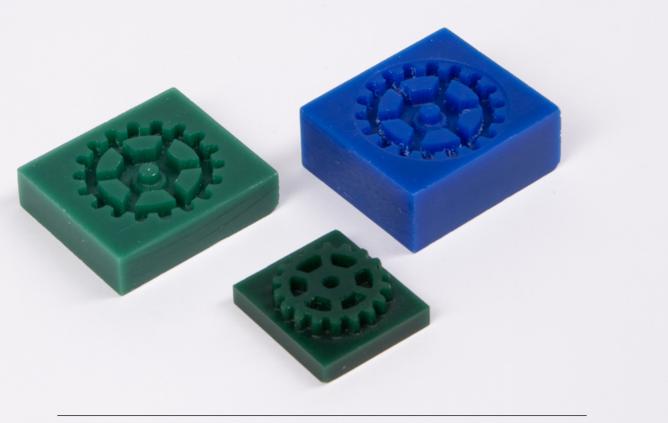
0.324 lbs / cu. in

CNC Milling - Others

Machining Wax

Machining Wax is an exceptionally hard synthetic wax mixed with plastic that delivers excellent machining properties, quality of finish and dimensional accuracy. Machining Wax is recyclable and reusable, and it's used to produce accurate molds, prototypes, and jewelry.

Used for casting, casting cores, molds, CNC program proofs.


Excellent machinability

Material Properties Information

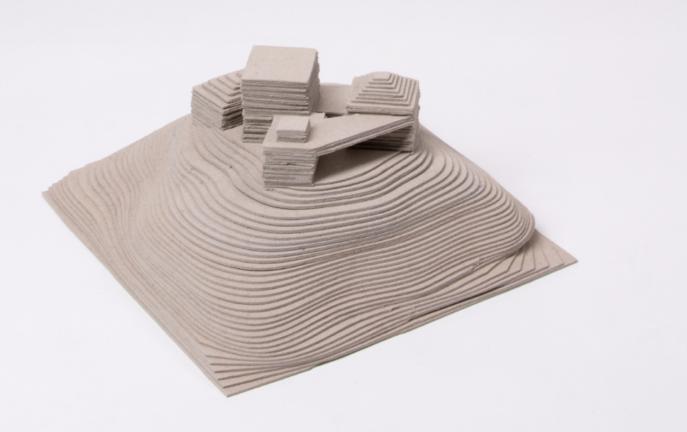
Work Parameters

Operation	Cutting/Engraving
Cutting Speed	1.75 mm/s
Lead in/out speed	1.25 mm/s
Max. step down	0.15 mm

back to material list >>

Imperial

0.034 lbs / cu. in


CNC Milling - Others

Cardboard

Cardboard is a paper-based material exhibiting good mechanical attributes. Cardboard is a durable and fully recyclable material that can be easily customized.

Used for packaging goods, hardcovers for books, advertising materials.

Eco-friendly Cheap Insulating

Material Properties Information

Mechanical Properties

Machining Difficulity

Tensile Strength

Elongation at Break

Density

Hardness

Maximum Temp

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5	1-15
1	1-15
1.5	1-15

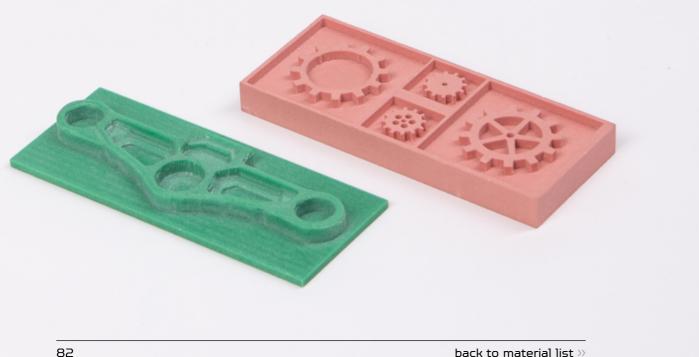
All properties are strongly dependent on type of cardboard

CNC Milling - Others

Modelling Board

Modelling Board (Polyurethane Tooling Block) is a highly machinable pored polyurethanebased light molding material compatible with a wide range of finishes and releases agents. Modelling Board offers great surface finish and is used mainly for molding whenever quick and accurate prototypes are needed. Modeling Boards differs from each other with density and temperature resistance.

Used for casting, casting cores, molds.


Excellent machinability

Material Properties Information

Work Parameters

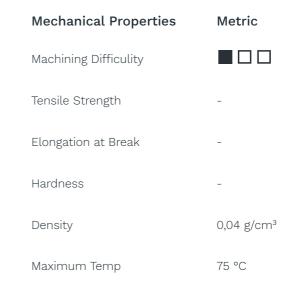
Stepdown [mm]	Speeds [mm/s]
0.5	1-15
1	1-15
1.5	1-15

V4 01 2021 Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization of these data.

Imperial

2,800 - 10,900 PSI

CNC Milling - Composites


Styrodur

Extruded Polystyrene Foam also known as Styrodur offers high stiffness, surface roughness, and reduced thermal conductivity. Extruded Polystyrene Foam is used for crafts, architectural models, and for advertising applications.

Used for advertising materials, composite cores, acoustic diffuser.

Great insulator

Material Properties Information

Work Parameters

Stepdown [mm]	Speeds [mm/s]
0.5	1-15
1	1-15
1.5	1-15

Imperial

0.001 lbs / cu. in

Laser engraving workflow uses a laser diode to engrave objects. The laser is programmed in software to follow a pre-designed path in a 2D model. The same workflow applies to laser cutting, but in this type of subtractive manufacturing, the laser usually follows the path more than once or much lower speed is applied. Laser cutting & engraving are fast and clean processes that allow a much more precise job than manual labor. This type of manufacturing is mostly used for signage & customization. The main advantages of laser are:

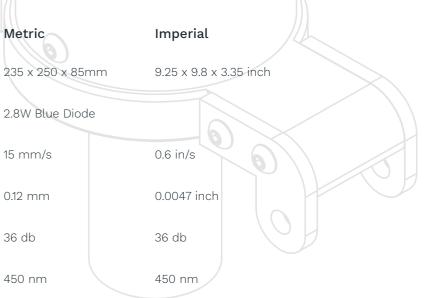
Accuracy Speed Repeatability Clean process

Laser Toolhead enables to turn Zmorph Fab All-in-One 3D Printer into a laser cutter & engraver that works with a wide range of materials including plastics, composites or foams. A dedicated worktable comes with preset holes for better material holding.

Metric

Technical Specs Working area

Laser power	2.8W Blue
Working speed	15 mm/s
Resolution	0.12 mm
Noise level	36 db
Wavelength	450 nm



Following materials may be dangerous for your health. During laser cutting and engraving always make sure that you and your surroundings are protected against all hazardous factors.

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

A very versatile, tough and durable material that can be used for various leather goods like purses, wallets, cases, belts, labels or decorative elements. Both genuine and artificial leather can be laser cut or engraved on.

Used for jewelry, engraved accessories, leather labels

Engraving Cutting

Laser Cutting & Engraving

A soft textile material used mostly for decorations. It's made of fibers condensed and pressed together. It can be efficiently laser cut in order to obtain custom shapes.

Used for jewelry and decorations, furniture pads, coasters.

Engraving Cutting

V4 01 2021 Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

An elastic and flexible material ready for laser engraving and cutting. It's thin and resistant to high temperatures, dissolvents and abrasion.

Used for stickers, advertising materials.

Cardboard

The biggest advantage is the price. It can be easily cut with laser and therefore works great as stencils.

Used for blanking dies, stencils, French curves.

Engraving Cutting

the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization



A delicate and elastic foam that can be laser-cut with ease. Its structure and features make it a good choice for decorative elements.

Used for jewelry and decorations, paddings.

Engraving Cutting

Wood fiber board

A composite wood product made from sawmill shavings or wood chips. It's used in furniture and can be laser engraved on to achieve custom designs or signatures.

Used for stencils, frame engraving.

Engraving

the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

Composed of thin layers of wood veneer. Laser engraving & cutting in plywood is mostly used for decorative elements, art and crafts.

Used for decorations, pictures.

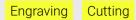
Engraving

Laser Cutting & Engraving

Wood can be easily engraved on and therefore allows for custom designed shapes and signage. Wood comes in various shapes and forms and it's best to laser engrave on end products.

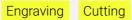
Used for engraving on end products.

Engraving


Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

EPP is resistant to most solvents, water and humidity. EPP usually comes in blocks that can be laser cut out to custom shapes. Use it as a filling in packages to safely store small elements or products.

Used for package fillings for better product holding (e.g. small SD cards).



Laser Cutting & Engraving

EVA Foam

Thanks to a high density of cells, EVA foam is a good material for laser cutting. It's main characteristsic are very low water absorption, softness, good shock-absorption and resistance to atmospheric agent.

Used for accessories, casings.

Technical data provided in this catalog is based on external studies. To the extent of our knowledge, the information is accurate, although Zmorph S. A. does not take any legal liability, regarding utilization

Neoprene

Neoprene is a type of synthetic rubber. The fabric resembles light, soft, and elastic foam, that exposes its traits such as stain resistance and general durability. Moreover, it has excellent temperature insulation properties and is effective against shock damages. It comes in a variety of colors which adds to esthetical values. The wide variety of applications include consumer goods, insulators, and the automotive industry.

Used for: wetsuits, face masks, electrical insulation, fan belts, laptop sleeves

Engraving Cutting

Handy Resources

The Official Zmorph Applications Catalog

Discover true versatility - explore 90+ pages of stunning creations made with Zmorph Multitool 3D Printer. Concept models, functional prototypes, low volume production and more. It's all in the catalog.

Zmorph Academy

Comprehensive online platform for Zmorph users. With almost 100 courses full of videos, pictures, and exercises, Zmorph Academy is designed to create and build your skills with 3D printing, CNC milling, and laser engraving. After finishing, the user will be able to make custom working PCBs and other complex projects.

Voxelizer Software

Zmorph's original Voxelizer software is the intelligence behind the machine. It allows you to control all fabrication methods of Zmorph All-in-One 3D Printers and gives you access to the most advanced 3D printing capabilities.

ZMORPH FAB Technical Specification

3D PRINTING

3D printing technology	FFF (Fused Filament Fabrication)
Toolheads	Single Extruder Toolhead 1.75, Dual Extruder Toolhead Toolhead
Layer resolution	0.05 - 0.4 [mm] *
Maximum printing temperature	250 [°C]
Work area	235 x 250 x 165 [mm]
Maximum bed temperature	115 [°C]
Minimum wall thickness	0.4 [mm] *
Dimensional accuracy	+/- 0.2 [mm]
Work area leveling method	Automatic, Manual
Material container	Spool, reel
Material diameter	1.75, 3.00 [mm]
Nozzle diameter	0.3, 0.4, 0.6 [mm]
Support structures	Mechanically and chemically removed - printed with the same material as the model
Connectivity	USB, Ethernet, SD card
Available Materials	PLA, ABS, PET, Nylon, PVA, HIPS, ASA, TPE, PP, PC, PMMA, PC/ABS
Third party materials	Applicable
Work speed	40 [mm/s]
Travel speed	120 [mm/s]

TEMPERATURE PARAMETERS

Ambient Operation Temperature	15 ~ 30 [°C]
Storage Temperature	-10 ~ 40 [°C]

CNC MILLING

CNC spindle	Toolhead
300 [W]	Spindle max power
70 [dB]	Noise
Manual	Work area leveling method
235 x 250 x 85 [mm] **	Work area
0.1 ~ 20 [mm/s]	Work speed
120 [mm/s]	Travel speed
ABS, Nylon, HDPE, PTFE, PC, PP, POM, PMMA, PVC, HIPS, LDPE, PET, Carbon, CCL FR4, Dibond, TCF, Wood, Wood- like, Aluminum, Brass, Copper, Cardboard, Wax, Modeling board, Styrodur	Available Materials
ER-11 collet	Tool holding

LASER ENGRAVING / CUTTING

Toolhead	Laser
Laser spot size for 50mm	0.1 x 0.1 [mm]
Laser spot size for 80mm	0.1 x 0.18 [mm]
Wavelength	450 [nm]
Laser class	4
Laser power	2.8 [W]
Noise	40 [dB]
Work area leveling method	Manual
Work area	235 x 250 x 85 [mm]
Work speed	15 [mm/s]
Travel speed	120 [mm/s]
Available Materials	Wood, wood-like, leather, EPP, paper, cardboard, felt, foil, laminate, EVA Foam, CCL FR4***

WEIGHT AND PHYSICAL DIMENSIONS

Printer without a spool holder	520 x 500 x 450 [mm]
Printer with a spool holder	520 x 500 x 570 [mm]
Printer with a HEPA filter	570 x 500 x 570 [mm]
Dimensions of the transport box	600 x 600 x 570 [mm]
Full set weight	28.70 [kg]
Printer weight	14.45 [kg]
Single Extruder Toolhead 1.75 weight	0.70 [kg]
Dual Extruder Toolhead Toolhead	1.00 [kg]
CNC Milling Toolhead	0.90 [kg]
Laser Toolhead	0.32 [kg]
Thick Paste Extruder Toolhead	0.60 [kg]

SOFTWARE

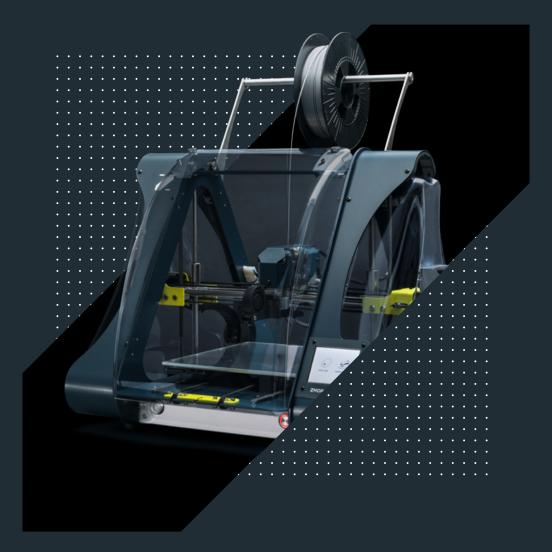
Software Bundle	Voxelizer
Supported File Types	.stl, .obj, .step, .dxf, .png, .bmp
Supported Operating Systems	Windows 7/10 (64 bit) or higher macOS 10.13 or higher

* Depending on the diameter of the nozzle,

** Depending on the mounted endmill and material,

*** Engraving - only when the surface is covered with black paint.

ELECTRICAL PARAMETERS


AC Input	100 [VAC] ~ 4 [A] 50/60 [Hz] 240 [VAC] ~ 2 [A] 50/60 [Hz]
Maximum Power Consumption	350 [W]
Power Consumption with single- head extruder	220 [W]
Power Consumption with Dual- head extruder	230 [W]
Power Consumption with CNC toolhead	330 [W]
Power Consumption with Laser toolhead	80 [W]

FILTRATION PARAMETERS

Filter type	HEPA/Carbon
Ventilation power	1.54 [W]
Filter dimensions	80 x 80 x 25 [mm]
Filter system dimensions	85 x 85 x 50 [mm]
Filtration control	Temperature

Zmorph Fab

All-in-One 3D Printer

Multifunctional environment with dedicated software ready to be the center of manufacturing companies, science labs, FabLabs, and academic institutions.

MEET ZMORPH FAB

 \rightarrow